--- title: "The Means Function" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{The Means Function} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` The `proc_means()` function simulates a SASĀ® PROC MEANS procedure. It is used to generate summary statistics on numeric variables. The function is both interactive and returns datasets. ## Create Sample Data Let's again create some sample data. This sample data is identical to that created for the `proc_freq()` tutorial, but has an additional grouping variable "g": ```{r eval=FALSE, echo=TRUE} # Create sample data dat <- read.table(header = TRUE, text = 'x y z g 6 A 60 P 6 A 70 P 2 A 100 P 2 B 10 P 3 B 67 Q 2 C 81 Q 3 C 63 Q 5 C 55 Q') # View sample data dat x y z g 1 6 A 60 P 2 6 A 70 P 3 2 A 100 P 4 2 B 10 P 5 3 B 67 Q 6 2 C 81 Q 7 3 C 63 Q 8 5 C 55 Q ``` ## Get Summary Statistics If no parameters are specified, the `proc_means()` function will calculate N, Means, Standard Deviation, Minimum, and Maximum on all numeric variables. Note that the `options` statement has been added to pass CRAN checks. When you are running code samples, this statement may be omitted. ```{r eval=FALSE, echo=TRUE} # Turn off printing for CRAN checks options("procs.print" = FALSE) # No parameters proc_means(dat) ``` ## Selected Variables If you don't want statistics on all numeric variables, you may specify variables on the `var` parameter: ```{r eval=FALSE, echo=TRUE} # Specific variable proc_means(dat, var = x) ``` ## Statistics Options The `proc_means()` function has a `stats` parameter that allows you to control which statistics are generated. There are many statistics keywords. Here is a sample of some of the most frequently used keywords:
KeywordDescription
NNumber of Observations
NMISSNumber of missing observations
MEANArithmetic mean
STDStandard Deviation
MINMinimum
MAXMaximum
SUMSum of observations
MEDIAN50th percentile
P11st percentile
P55st percentile
P1010th percentile
P9090th percentile
P9595th percentile
P9999th percentile
Q1First Quartile
Q3Third Quartile
Now that we know some statistics keywords, let's practice using them. Here is an example which calculates the median, sum, first quartile, and third quartile for all numeric variables in our sample data: ```{r eval=FALSE, echo=TRUE} # Custom statistics options proc_means(dat, stats = v(median, sum, q1, q3)) ``` ## Output Datasets Similar to the `proc_freq()` function, `proc_means()` can return datasets. There are three options: "out", "report", and "none". The "out" option returns datasets meant for further manipulation and analysis, and is the default. The "report" keyword requests the exact datasets used in the interactive report. Specifying either one of these options will cause the function to return data. Here is an example that shows the difference in the "report" and "out" options: ```{r eval=FALSE, echo=TRUE} # Output dataset using "report" option res1 <- proc_means(dat, stats = v(median, sum, q1, q3), output = report) # View results res1 # VAR MEDIAN SUM Q1 Q3 # 1 x 3 29 2.0 5.5 # 2 z 65 506 57.5 75.5 # Output dataset using "out" option res2 <- proc_means(dat, stats = v(median, sum, q1, q3), output = out) # View results res2 # TYPE FREQ VAR MEDIAN SUM Q1 Q3 # 1 0 8 x 3 29 2.0 5.5 # 2 0 8 z 65 506 57.5 75.5 ``` As can be seen in the above example, the "out" dataset includes additional variables for TYPE and FREQ. These additional variables can be turned off with options: ```{r eval=FALSE, echo=TRUE} # Turn off TYPE and FREQ variables res3 <- proc_means(dat, stats = v(median, sum, q1, q3), output = all, options = v(notype, nofreq)) # View results res3 # VAR MEDIAN SUM Q1 Q3 # 1 x 3 29 2.0 5.5 # 2 z 65 506 57.5 75.5 ``` ## Grouping The `proc_means()` function provides two grouping parameters: `class` and `by`. These parameters identify a variable or variables for subsetting the input data. While these parameters have similar capabilities, there are some difference between them. The differences can be examined by comparing the two function calls. ### Class ```{r eval=FALSE, echo=TRUE} # Class grouping res1 <- proc_means(dat, stats = v(median, sum, q1, q3), class = y, options = v(maxdec = 4)) ``` Below is the output dataset from the `class` parameter. Notice that summary values have been provided for each variable, in addition to the subsets by the class variable. The summary rows are identifed by TYPE = 0, while the subset rows are TYPE = 1. ```{r eval=FALSE, echo=TRUE} # View results - class res1 # CLASS TYPE FREQ VAR MEDIAN SUM Q1 Q3 # 1 0 8 x 3.0 29 2.0 5.5 # 2 0 8 z 65.0 506 57.5 75.5 # 3 A 1 3 x 6.0 14 2.0 6.0 # 4 A 1 3 z 70.0 230 60.0 100.0 # 5 B 1 2 x 2.5 5 2.0 3.0 # 6 B 1 2 z 38.5 77 10.0 67.0 # 7 C 1 3 x 3.0 10 2.0 5.0 # 8 C 1 3 z 63.0 199 55.0 81.0 ``` ### By Here is the same analysis using the `by` parameter instead of the `class` parameter: ```{r eval=FALSE, echo=TRUE} # By grouping res2 <- proc_means(dat, stats = v(median, sum, q1, q3), by = y, options = v(maxdec = 4)) ``` Notice that with the `by` parameter, separate tables are created for each by group on the interactive report. Now let's look at the output dataset: ```{r eval=FALSE, echo=TRUE} # View results - by res2 # BY TYPE FREQ VAR MEDIAN SUM Q1 Q3 # 1 A 0 3 x 6.0 14 2 6 # 2 A 0 3 z 70.0 230 60 100 # 3 B 0 2 x 2.5 5 2 3 # 4 B 0 2 z 38.5 77 10 67 # 5 C 0 3 x 3.0 10 2 5 # 6 C 0 3 z 63.0 199 55 81 ``` The output dataset is also different from the `class` output. While the TYPE variables exists on the output dataset, the output data for the by group does not include the summary rows. The summary rows are a feature of the `class` variable. You should select the grouping parameter that most suits your needs. ## Multiple Groups ### Class The `proc_means()` function can perform analysis with multiple grouping variables. First let's examine what happens when we pass multiple grouping variables to the `class` parameter: ```{r eval=FALSE, echo=TRUE} # Class grouping - two variables res1 <- proc_means(dat, stats = v(median, sum, q1, q3), class = v(g, y), options = v(maxdec = 0)) ``` Here is the output dataset: ```{r eval=FALSE, echo=TRUE} # View results - two class variables res1 # CLASS1 CLASS2 TYPE FREQ VAR MEDIAN SUM Q1 Q3 # 1 0 8 x 3.0 29 2.0 5.5 # 2 0 8 z 65.0 506 57.5 75.5 # 3 A 1 3 x 6.0 14 2.0 6.0 # 4 A 1 3 z 70.0 230 60.0 100.0 # 5 B 1 2 x 2.5 5 2.0 3.0 # 6 B 1 2 z 38.5 77 10.0 67.0 # 7 C 1 3 x 3.0 10 2.0 5.0 # 8 C 1 3 z 63.0 199 55.0 81.0 # 9 P 2 4 x 4.0 16 2.0 6.0 # 10 P 2 4 z 65.0 240 35.0 85.0 # 11 Q 2 4 x 3.0 13 2.5 4.0 # 12 Q 2 4 z 65.0 266 59.0 74.0 # 13 P A 3 3 x 6.0 14 2.0 6.0 # 14 P A 3 3 z 70.0 230 60.0 100.0 # 15 P B 3 1 x 2.0 2 2.0 2.0 # 16 P B 3 1 z 10.0 10 10.0 10.0 # 17 Q B 3 1 x 3.0 3 3.0 3.0 # 18 Q B 3 1 z 67.0 67 67.0 67.0 # 19 Q C 3 3 x 3.0 10 2.0 5.0 # 20 Q C 3 3 z 63.0 199 55.0 81.0 ``` Observe that the function produces statistics for each set of combinations of the `class` variable. Each level of combinations is identified by the TYPE value. To turn off the class combinations, pass the "nway" option. ### By Now let's see what happens when we use the `by` parameter with two variables: ```{r eval=FALSE, echo=TRUE} # By grouping - two variables res2 <- proc_means(dat, stats = v(median, sum, q1, q3), by = v(g, y), options = v(maxdec = 0)) ``` Here is the output dataset for the `by` parameter: ```{r eval=FALSE, echo=TRUE} # View results - two by variables res2 # BY1 BY2 TYPE FREQ VAR MEDIAN SUM Q1 Q3 # 1 P A 0 3 x 6 14 2 6 # 2 P A 0 3 z 70 230 60 100 # 3 P B 0 1 x 2 2 2 2 # 4 P B 0 1 z 10 10 10 10 # 5 Q B 0 1 x 3 3 3 3 # 6 Q B 0 1 z 67 67 67 67 # 7 Q C 0 3 x 3 10 2 5 # 8 Q C 0 3 z 63 199 55 81 ``` ### By and Class Finally, let's see what happens when we specify both `by` and `class` parameters: ```{r eval=FALSE, echo=TRUE} # By grouping - by and class res3 <- proc_means(dat, stats = v(median, sum, q1, q3), by = g, class = y, options = v(maxdec = 0)) ``` ```{r eval=FALSE, echo=TRUE} # View results - by and class res3 # BY CLASS TYPE FREQ VAR MEDIAN SUM Q1 Q3 # 1 P 0 4 x 4 16 2.0 6 # 2 P 0 4 z 65 240 35.0 85 # 3 P A 1 3 x 6 14 2.0 6 # 4 P A 1 3 z 70 230 60.0 100 # 5 P B 1 1 x 2 2 2.0 2 # 6 P B 1 1 z 10 10 10.0 10 # 7 Q 0 4 x 3 13 2.5 4 # 8 Q 0 4 z 65 266 59.0 74 # 9 Q B 1 1 x 3 3 3.0 3 # 10 Q B 1 1 z 67 67 67.0 67 # 11 Q C 1 3 x 3 10 2.0 5 # 12 Q C 1 3 z 63 199 55.0 81 ``` ## Data Shaping The `proc_means()` function also offers options for data shaping. The shaping options can reduce the number of transformations needed to get to your target table. There are three shaping options: "wide", "long", and "stacked". The "wide" option is the default, and places the statistics in columns and variables in rows. The "long" option places statistics in rows and variables in columns. The "stacked" option puts both statistics and variables in rows. The following example illustrates the differences between these data shaping options: ```{r eval=FALSE, echo=TRUE} # Shape wide res1 <- proc_means(dat, stats = v(median, sum, q1, q3), output = wide) # Wide results res1 # TYPE FREQ VAR MEDIAN SUM Q1 Q3 # 1 0 8 x 3 29 2.0 5.5 # 2 0 8 z 65 506 57.5 75.5 # Shape long res2 <- proc_means(dat, stats = v(median, sum, q1, q3), output = long) # Long results res2 # TYPE FREQ STAT x z # 1 0 8 MEDIAN 3.0 65.0 # 2 0 8 SUM 29.0 506.0 # 3 0 8 Q1 2.0 57.5 # 4 0 8 Q3 5.5 75.5 # Shape stacked res3 <- proc_means(dat, stats = v(median, sum, q1, q3), output = stacked) # Stacked results res3 # TYPE FREQ VAR STAT VALUES # 1 0 8 x MEDIAN 3.0 # 2 0 8 x SUM 29.0 # 3 0 8 x Q1 2.0 # 4 0 8 x Q3 5.5 # 5 0 8 z MEDIAN 65.0 # 6 0 8 z SUM 506.0 # 7 0 8 z Q1 57.5 # 8 0 8 z Q3 75.5 ``` Next: [T-Test Function](procs-ttest.html)