---
title: "pkgdiff"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{pkgdiff}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
```{r setup}
library(pkgdiff)
```
The purpose of **pkgdiff** is to identify changes between package versions,
with the aim of assessing package stability. Here is a list of the major
functions in **pkgdiff**, and a short explanation of each:
- `pkg_info()`: Displays general information about a package,
including the description, maintainer, and number of downloads in
the last month.
- `pkg_versions()`: Returns a data frame of all versions of a package.
- `pkg_diff()`: Compares two versions of a package, and shows
which functions and parameters have been added or removed.
- `pkg_stability()`: Looks at the history of a package,
identifies breaking changes, and assesses the package for stability.
- `pkg_repo()`: Generates a table of the packages in a repository
and their versions.
- `repo_breakages()`: Looks at a package repository and tries to identify
which packages will break when upgraded.
- `repo_stability()`: Looks at a package repository and calculates
a stability score for each package.
Below is a further elaboration and demo for each of the above functions.
## General Package Information
The first thing you may want to do when exploring a package is to get
some general information about it. General information about a package
can be achieved using the `pkg_info()` function. All you need to
pass is the package name. The function will then return basic
information such as the maintainer, description,
and imported packages. Here is a simple demonstration:
```{r eval=FALSE, echo=TRUE}
# Examine tidymodels package
pkg_info("tidymodels")
# # A package info object: tidymodels package
# - Version: v1.2.0
# - Release Date: 2024-03-25
# - Title: Easily Install and Load the 'Tidymodels' Packages
# - Maintainer: Max Kuhn
# - License: MIT + file LICENSE
# - Description: The tidy modeling "verse" is a collection of packages for
# modeling and statistical analysis that share the underlying design
# philosophy, grammar, and data structures of the tidyverse.
# - Depends: R (>= 3.6)
# - Imports: broom (>= 1.0.5), cli (>= 3.6.2), conflicted (>= 1.2.0),
# dials (>= 1.2.1), dplyr (>= 1.1.4), ggplot2 (>= 3.5.0), hardhat (>= 1.3.1),
# infer (>= 1.0.6), modeldata (>= 1.3.0), parsnip (>= 1.2.1), purrr (>= 1.0.2),
# recipes (>= 1.0.10), rlang (>= 1.1.3), rsample (>= 1.2.1), rstudioapi (>= 0.16.0),
# tibble (>= 3.2.1), tidyr (>= 1.3.1), tune (>= 1.2.0), workflows (>= 1.1.4),
# workflowsets (>= 1.1.0), yardstick (>= 1.3.1)
# - Suggests: covr, glue, knitr, rmarkdown, testthat (>= 3.0.0), xml2
# - Repository: CRAN
# - Cached: TRUE
# - Functions: 9
```
The return value of this function is actually an object that can be manipulated
programmatically. Here we will extract some of the data values from this object:
```{r eval=FALSE, echo=TRUE}
# Capture package info object
res <- pkg_info("tidymodels")
# View version
res$Version
# [1] "1.3.0"
# View title
res$Title
# [1] "Easily Install and Load the 'Tidymodels' Packages"
# View release date
res$ReleaseDate
# [1] "2025-02-21"
```
Note that, by default, the version of the package returned is the version of the package
located on the current machine, in the current version of the R repository.
If the package is not installed in the current R repository, the function
will return the latest version on CRAN.
Also note that the object provides a complete list of all functions exported
by the package. The function list can be accessed programmatically, and also viewed using
the `verbose` parameter of the `print()` function:
```{r eval=FALSE, echo=TRUE}
# Get package info
res <- pkg_info("tidymodels")
# View functions
print(res, verbose = TRUE)
# # A package info object: tidymodels package
# - Version: v1.3.0
# - Release Date: 2025-02-21
# - Title: Easily Install and Load the 'Tidymodels' Packages
# - Maintainer: Max Kuhn
# - License: MIT + file LICENSE
# - Description: The tidy modeling "verse" is a collection of packages for
# modeling and statistical analysis that share the underlying design
# philosophy, grammar, and data structures of the tidyverse.
# - Depends: R (>= 3.6)
# - Imports: broom (>= 1.0.7), cli (>= 3.6.4), conflicted (>= 1.2.0),
# dials (>= 1.4.0), dplyr (>= 1.1.4), ggplot2 (>= 3.5.1), hardhat (>= 1.4.1),
# infer (>= 1.0.7), modeldata (>= 1.4.0), parsnip (>= 1.3.0), purrr (>= 1.0.4),
# recipes (>= 1.1.1), rlang (>= 1.1.5), rsample (>= 1.2.1), rstudioapi (>= 0.17.1),
# tibble (>= 3.2.1), tidyr (>= 1.3.1), tune (>= 1.3.0), workflows (>= 1.2.0),
# workflowsets (>= 1.1.0), yardstick (>= 1.3.2)
# - Suggests: covr, glue, knitr, rmarkdown, testthat (>= 3.0.0), xml2
# - Downloads/Month: 31789
# - Repository: CRAN
# - Cached: TRUE
# - Functions:
# - pkg_deps(): x, recursive
# - print.tidymodels_conflicts(): x, ..., startup
# - tag_attach(): tag
# - tag_show()
# - tag_update(): tag
# - tidymodels_conflicts()
# - tidymodels_packages(): include_self
# - tidymodels_prefer(): quiet
# - tidymodels_update(): pkg, recursive, ...
```
## Stability Assessment
Besides general information about a package, you may also view the "stability"
of a package. The `pkg_stability()` function looks at the entire history
of the package, and attempts to assess its overall stability in terms of
breaking changes. Here, a "breaking change" means either a removed function
or removed function parameter. The `pkg_stability()` function is very useful when you are
writing production code, and want to select the most stable packages possible.
The results of this function can help you make that determination:
```{r eval=FALSE, echo=TRUE}
# View package stability
pkg_stability("tidymodels")
# # A stability score: tidymodels package
# - Age: 6.58 years
# - Score: 100.0
# - Assessment: Perfect
# - Version Range: 0.0.1/1.3.0
# - Release Range: 2018-07-27/2025-02-21
# - Release Count: 14
# - Breaking Releases: 0
# - Data:
# Package Version FileName Release Size AF AP RF RP BC TF
# 1 tidymodels 1.3.0 tidymodels_1.3.0.tar.gz 2025-02-21 46.4K 0 0 0 0 0 9
# 2 tidymodels 1.2.0 tidymodels_1.2.0.tar.gz 2024-03-25 49.6K 0 0 0 0 0 9
# 3 tidymodels 1.1.1 tidymodels_1.1.1.tar.gz 2023-08-24 50K 0 0 0 0 0 9
# 4 tidymodels 1.1.0 tidymodels_1.1.0.tar.gz 2023-05-01 49K 0 0 0 0 0 9
# 5 tidymodels 1.0.0 tidymodels_1.0.0.tar.gz 2022-07-13 75K 0 0 0 0 0 9
# 6 tidymodels 0.2.0 tidymodels_0.2.0.tar.gz 2022-03-19 75K 0 0 0 0 0 9
# 7 tidymodels 0.1.4 tidymodels_0.1.4.tar.gz 2021-10-01 17K 0 0 0 0 0 9
# 8 tidymodels 0.1.3 tidymodels_0.1.3.tar.gz 2021-04-19 15K 1 0 0 0 0 9
# 9 tidymodels 0.1.2 tidymodels_0.1.2.tar.gz 2020-11-22 26K 0 0 0 0 0 8
# 10 tidymodels 0.1.1 tidymodels_0.1.1.tar.gz 2020-07-14 25K 0 0 0 0 0 8
# 11 tidymodels 0.1.0 tidymodels_0.1.0.tar.gz 2020-02-16 57K 0 0 0 0 0 8
# 12 tidymodels 0.0.3 tidymodels_0.0.3.tar.gz 2019-10-05 19K 0 0 0 0 0 8
# 13 tidymodels 0.0.2 tidymodels_0.0.2.tar.gz 2018-11-27 18K 0 0 0 0 0 8
# 14 tidymodels 0.0.1 tidymodels_0.0.1.tar.gz 2018-07-27 18K 8 8 0 0 0 8
```
The stability score is calculated generally as the percentage of non-breaking
releases. Breaking releases are also weighted to reduce their impact over time.
The above score of 100 for **tidymodels** means that the package has never
had a breaking change. It is therefore given a stability assessment of "Perfect".
Now let's look at a package with some breaking changes:
```{r eval=FALSE, echo=TRUE}
# View package stability
pkg_stability("dbplyr")
# # A stability score: dbplyr package
# - Age: 7.67 years
# - Score: 73.7
# - Assessment: Unstable
# - Version Range: 1.0.0/2.5.0
# - Release Range: 2017-06-09/2024-03-19
# - Release Count: 23
# - Breaking Releases: 10
# - Data:
# Package Version FileName Release Size AF AP RF RP BC TF
# 1 dbplyr 2.5.0 dbplyr_2.5.0.tar.gz 2024-03-19 752.6K 32 6 12 0 1 611
# 2 dbplyr 2.4.0 dbplyr_2.4.0.tar.gz 2023-10-26 743K 74 80 45 33 1 591
# 3 dbplyr 2.3.4 dbplyr_2.3.4.tar.gz 2023-09-27 706K 0 0 0 0 0 562
# 4 dbplyr 2.3.3 dbplyr_2.3.3.tar.gz 2023-07-07 706K 0 0 0 0 0 562
# 5 dbplyr 2.3.2 dbplyr_2.3.2.tar.gz 2023-03-21 707K 0 1 0 1 1 562
# 6 dbplyr 2.3.1 dbplyr_2.3.1.tar.gz 2023-02-24 707K 5 6 1 0 1 562
# 7 dbplyr 2.3.0 dbplyr_2.3.0.tar.gz 2023-01-16 688K 33 16 5 1 1 558
# 8 dbplyr 2.2.1 dbplyr_2.2.1.tar.gz 2022-06-27 655K 4 0 0 0 0 530
# 9 dbplyr 2.2.0 dbplyr_2.2.0.tar.gz 2022-06-05 655K 136 47 53 1 1 526
# 10 dbplyr 2.1.1 dbplyr_2.1.1.tar.gz 2021-04-06 568K 5 0 0 0 0 443
# 11 dbplyr 2.1.0 dbplyr_2.1.0.tar.gz 2021-02-03 566K 15 2 0 0 0 438
# 12 dbplyr 2.0.0 dbplyr_2.0.0.tar.gz 2020-11-03 522K 139 33 94 11 1 423
# 13 dbplyr 1.4.4 dbplyr_1.4.4.tar.gz 2020-05-27 417K 5 0 0 0 0 378
# 14 dbplyr 1.4.3 dbplyr_1.4.3.tar.gz 2020-04-19 413K 9 3 2 2 1 373
# 15 dbplyr 1.4.2 dbplyr_1.4.2.tar.gz 2019-06-17 296K 1 0 0 0 0 366
# 16 dbplyr 1.4.1 dbplyr_1.4.1.tar.gz 2019-06-06 296K 1 0 0 0 0 365
# 17 dbplyr 1.4.0 dbplyr_1.4.0.tar.gz 2019-04-24 295K 24 30 17 13 1 364
# 18 dbplyr 1.3.0 dbplyr_1.3.0.tar.gz 2019-01-09 263K 2 0 0 0 0 357
# 19 dbplyr 1.2.2 dbplyr_1.2.2.tar.gz 2018-07-25 258K 0 0 0 0 0 355
# 20 dbplyr 1.2.1 dbplyr_1.2.1.tar.gz 2018-02-19 257K 0 0 0 0 0 355
# 21 dbplyr 1.2.0 dbplyr_1.2.0.tar.gz 2018-01-03 257K 43 6 2 2 1 355
# 22 dbplyr 1.1.0 dbplyr_1.1.0.tar.gz 2017-06-27 241K 23 2 0 0 0 314
# 23 dbplyr 1.0.0 dbplyr_1.0.0.tar.gz 2017-06-09 235K 291 291 0 0 0 291
```
As seen above, the **dbplyr** package has had a lot of breaking changes. Which releases
had breaking changes are shown in the "BC" column of the data grid. The "AF" and
"AP" columns stand for "Added Functions" and "Added Parameters", while
"RF" and "RP" mean "Removed Functions" and "Removed Parameters". "TF" is the total
number of exported functions in that version of the package.
Since this package has issued breaking changes in 10 out of 23 releases, it gets
a stability score of 73.7, and an assessment of "Unstable". A stability assessment
of "Unstable" does not necessarily mean you should not use the package. Whether
or not you use the package depends on your situation, and the amount of
risk you can tolerate.
## Comparing Package Versions
If you find a package with breaking changes, you would then want to know
what those breaking changes are. The breaking changes between package versions
can be discovered with the `pkg_diff()` function. This function accepts
a package name, and the two versions of the package you wish to compare.
Looking at our stability data above, let's examine the breaking changes
between versions "2.4.0" and "2.5.0" of **dbplyr**:
```{r eval=FALSE, echo=TRUE}
# Compare package versions
pkg_diff("dbplyr", "2.4.0", "2.5.0")
# # A difference object: dbplyr package
# - Comparing: v2.4.0/v2.5.0
# - Breaking Changes: TRUE
# - Added Functions:
# - [.dbplyr_table_path()
# - [[.dbplyr_table_path()
# - as_table_path()
# - c.dbplyr_table_path()
# - check_table_path()
# - complete.tbl_lazy()
# - db_explain.Oracle()
# - db_explain.OraConnection()
# - db_sql_render.Microsoft SQL Server()
# - escape.dbplyr_table_path()
# - escape.default()
# - expand.tbl_lazy()
# - fill.tbl_lazy()
# - group_by_drop_default.tbl_lazy()
# - intersect.tbl_lazy()
# - is_table_path()
# - pivot_longer.tbl_lazy()
# - pivot_wider.tbl_lazy()
# - print.dbplyr_table_path()
# - reframe.tbl_lazy()
# - replace_na.tbl_lazy()
# - setdiff.OraConnection()
# - setdiff.tbl_lazy()
# - setdiff.tbl_Oracle()
# - simulate_mariadb()
# - sql_escape_ident.default()
# - sql_escape_ident.MySQLConnection()
# - sql_escape_string.default()
# - table_path_components()
# - table_path_components.default()
# - table_path_name()
# - union.tbl_lazy()
# - Added Parameters:
# - flatten_query.base_query(): con
# - flatten_query.multi_join_query(): con
# - flatten_query.select_query(): con
# - flatten_query.union_query(): con
# - flatten_query.values_query(): con
# - sql_translation.MySQL(): con
# - Removed Functions:
# - as_table_ident.character()
# - as_table_ident.dbplyr_catalog()
# - as_table_ident.dbplyr_schema()
# - as_table_ident.dbplyr_table_ident()
# - as_table_ident.Id()
# - as_table_ident.ident()
# - as_table_ident.ident_q()
# - as_table_ident.sql()
# - escape.dbplyr_table_ident()
# - format.dbplyr_table_ident()
# - sql_escape_ident.DBIConnection()
# - sql_escape_string.DBIConnection()
```
As you can see, many new functions and function parameters have been added
between these two versions. In addition, there are 12 functions that
have been removed. It is up to you to determine whether and how these
removals will affect your programs. It is very convenient, however,
to have an accurate accounting of package changes. These changes
can help you plan your package upgrades and anticipate breakages.
## Listing Package Versions
Another question you may ask when evaluating a package is: How many versions of
a package are there? **pkgdiff** provides two tools to find version
information: `pkg_versions()` and `pkg_repo()`.
`pkg_versions()` returns all the versions of a package in a data frame, along
with release dates for each version. It works like this:
```{r eval=FALSE, echo=TRUE}
# Get package versions
pkg_versions("stringr")
# Package Version FileName Release Size
# 1 stringr 1.5.1 stringr_1.5.1.tar.gz 2023-11-14 172K
# 2 stringr 1.5.0 stringr_1.5.0.tar.gz 2022-12-02 172K
# 3 stringr 1.4.1 stringr_1.4.1.tar.gz 2022-08-21 133K
# 4 stringr 1.4.0 stringr_1.4.0.tar.gz 2019-02-10 133K
# 5 stringr 1.3.1 stringr_1.3.1.tar.gz 2018-05-10 116K
# 6 stringr 1.3.0 stringr_1.3.0.tar.gz 2018-02-19 116K
# 7 stringr 1.2.0 stringr_1.2.0.tar.gz 2017-02-18 92K
# 8 stringr 1.1.0 stringr_1.1.0.tar.gz 2016-08-19 62K
# 9 stringr 1.0.0 stringr_1.0.0.tar.gz 2015-04-30 34K
# 10 stringr 0.6.2 stringr_0.6.2.tar.gz 2012-12-06 20K
# 11 stringr 0.6.1 stringr_0.6.1.tar.gz 2012-07-25 20K
# 12 stringr 0.6 stringr_0.6.tar.gz 2011-12-08 20K
# 13 stringr 0.5 stringr_0.5.tar.gz 2011-06-30 18K
# 14 stringr 0.4 stringr_0.4.tar.gz 2010-08-24 16K
# 15 stringr 0.3 stringr_0.3.tar.gz 2010-02-15 11K
# 16 stringr 0.2 stringr_0.2.tar.gz 2009-11-16 10K
# 17 stringr 0.1.10 stringr_0.1.10.tar.gz 2009-11-09 6.8K
```
Observe that the **stringr** package has had 17 releases. The first
release was in 2009, and the most recent in 2023. This information is
scraped from the CRAN archive site. It is useful for understanding
the release history of a package, and knowing which versions
of a package are available.
Next, you may want to know which versions of packages you have installed
in your R repository. This information can be queried using the
`pkg_repo()` function. Let's take a look:
```{r eval=FALSE, echo=TRUE}
# Check version in repo
pkg_repo("stringr")
# # A package repo object
# - Repo Version: 4.4
# - Packages:
# Package Version
# 1 stringr 1.5.1
```
Base on the above information, it appears we have the latest version of
**stringr** installed in our R 4.4 repo. Good to know!
Can `pkg_repo()` be used to get versions for multiple packages? Yes! Here
is how:
```{r eval=FALSE, echo=TRUE}
# Create vector of packages
v1 <- c("curl", "dplyr", "fmtr", "purrr")
# Get current versions
res1 <- pkg_repo(v1, ver = "current")
# View results
res1
# # A package repo object
# - Repo Version: 4.4
# - Packages:
# Package Version
# 1 curl 5.2.1
# 2 dplyr 1.1.4
# 3 fmtr 1.6.5
# 4 purrr 1.0.2
# Get latest versions
res2 <- pkg_repo(v1, ver = "latest")
# View results
res2
# # A package repo object
# - Repo Version: latest
# - Packages:
# Package Version
# 1 curl 6.2.1
# 2 dplyr 1.1.4
# 3 fmtr 1.6.8
# 4 purrr 1.0.4
```
Moreover, if you run `pkg_repo()` without any parameters, it will return
all the R packages you have installed, along with their versions. Nice!
The `pkg_repo()` function is very useful when dealing with large numbers of
packages. This function feeds directly into the next two topics, which discuss
operations on entire repositories.
## Anticipating Breakages
One of the main motivations for creating **pkgdiff** was to find a way to
better handle repository upgrades. As it stands, repository upgrades can be a
chaotic experience. When you have several hundred packages in your repository,
you will surely have some of them break when you go to upgrade. Wouldn't it
be nice to at least know which packages are going to break? That is the topic
of this next section.
### Small Set of Packages
First, let's see how we can anticipate breaking changes on a small number of
packages.
For this exercise, we will use the `res1` and `res2`
data frames from the previous section. These data frames were created using
`pkg_repo()`, and contain version numbers for four R packages. These data
frames are in fact perfect inputs to our next function: `repo_breakages()`.
The `repo_breakages()` function can compare packages in bulk. It will
perform difference operations on any number of packages, and tell you whether
or not there will be any breaking changes. As you can imagine, this function
is well suited for repository upgrades. Here is an example:
```{r eval=FALSE, echo=TRUE}
# View upgrade breakages
repo_breakages(res1, res2)
# Comparing curl v5.2.1/v6.2.0
# Comparing fmtr v1.6.5/v1.6.8
# Comparing purrr v1.0.2/v1.0.4
# # A repo breakages object
# - Run Datetime: 2025-03-01 17:58 UTC
# - Summary:
# Package Version1 Version2 Breakages
# 1 curl 5.2.1 6.2.1 TRUE
# 2 dplyr 1.1.4 1.1.4 FALSE
# 3 fmtr 1.6.5 1.6.8 FALSE
# 4 purrr 1.0.2 1.0.4 FALSE
# - Details:
# # A difference object: curl package
# - Comparing: v5.2.1/v6.2.1
# - Breaking Changes: TRUE
# - Added Functions: 1
# - Added Parameters: 3
# - Removed Parameters:
# - multi_download(): timeout
```
The `repo_breakages()` function returns a list with two major items: "Summary"
and "Details". The "Summary" item is a data frame showing the input packages,
the input package versions, and a TRUE or FALSE flag that describes whether
there are any breaking changes between the two package versions. The "details"
list item then provides the difference object for any package that had
a breaking change. This function tells you exactly what you need to know
before a repository upgrade. If desired, you can then use the difference
information to scan your code, and determine whether those removals will
break anything.
### Entire Repository
The above demonstration showed how to use `repo_breakages()` on a small number
of packages. Now let's see how to use the function on a large number of packages.
In fact, we will perform an upgrade analyse on our entire R repository:
```{r eval=FALSE, echo=TRUE}
# Get current versions from local repo
r1 <- pkg_repo(ver = "current")
# View Results
r1
# # A package repo object
# - Repo Version: 4.2
# - Packages:
# Package Version
# 1 abind 1.4-5
# 2 admiral 0.10.1
# 3 admiraldev 0.3.0
# 4 admiralonco 0.3.0
# 5 ards 0.1.0
# 6 arrow 11.0.0.3
# 7 askpass 1.1
# 8 assertthat 0.2.1
# 9 aws.s3 0.3.21
# 10 aws.signature 0.6.0
# 11 backports 1.4.1
# 12 base64enc 0.1-3
# 13 bit 4.0.4
# 14 bit64 4.0.5
# 15 bitops 1.0-7
# 16 blob 1.2.3
# ...
# Get latest versions of current repo on CRAN
r2 <- pkg_repo(r1$Package, ver = "latest")
# View Results
r2
# # A package repo object
# - Repo Version: latest
# - Packages:
# Package Version
# 1 abind 1.4-8
# 2 admiral 1.2.0
# 3 admiraldev 1.2.0
# 4 admiralonco 1.2.0
# 5 ards 0.1.1
# 6 arrow 18.1.0.1
# 7 askpass 1.2.1
# 8 assertthat 0.2.1
# 9 aws.s3 0.3.21
# 10 aws.signature 0.6.0
# 11 backports 1.5.0
# 12 base64enc 0.1-3
# 13 bit 4.5.0.1
# 14 bit64 4.6.0-1
# 15 bitops 1.0-9
# 16 blob 1.2.4
# ...
# Check for breakages on whole repository
res <- repo_breakages(r1, r2)
# Comparing abind v1.4-5/v1.4-8
# Comparing admiral v0.10.1/v1.2.0
# Comparing admiraldev v0.3.0/v1.2.0
# Comparing admiralonco v0.3.0/v1.2.0
# Comparing ards v0.1.0/v0.1.1
# Archive versions of 'ards' not available.
# Comparing arrow v11.0.0.3/v18.1.0.1
# Comparing askpass v1.1/v1.2.1
# Comparing backports v1.4.1/v1.5.0
# Comparing bit v4.0.4/v4.5.0.1
# Comparing bit64 v4.0.5/v4.6.0-1
# Comparing bitops v1.0-7/v1.0-9
# Comparing blob v1.2.3/v1.2.4
# Comparing box v1.1.3/v1.2.0
# Comparing brew v1.0-8/v1.0-10
# Comparing brio v1.1.3/v1.1.5
# Comparing broom v1.0.1/v1.0.7
# Comparing bslib v0.4.0/v0.9.0
# Comparing cachem v1.0.6/v1.1.0
# Comparing callr v3.7.3/v3.7.6
# ...
```
When the processing finishes, you can examine the results using dollar sign ($)
notation:
```{r eval=FALSE, echo=TRUE}
# View Summary Table
res$Summary
# Package Version1 Version2 Breakages
# 1 abind 1.4-5 1.4-8 FALSE
# 2 admiral 0.10.1 1.2.0 TRUE
# 3 admiraldev 0.3.0 1.2.0 TRUE
# 4 admiralonco 0.3.0 1.2.0 TRUE
# 5 ards 0.1.0 0.1.1 NA
# 6 arrow 11.0.0.3 18.1.0.1 FALSE
# 7 askpass 1.1 1.2.1 FALSE
# 8 assertthat 0.2.1 0.2.1 FALSE
# 9 aws.s3 0.3.21 0.3.21 FALSE
# 10 aws.signature 0.6.0 0.6.0 FALSE
# 11 backports 1.4.1 1.5.0 FALSE
# 12 base64enc 0.1-3 0.1-3 FALSE
# 13 bit 4.0.4 4.5.0.1 FALSE
# 14 bit64 4.0.5 4.6.0-1 TRUE
# 15 bitops 1.0-7 1.0-9 FALSE
# 16 blob 1.2.3 1.2.4 FALSE
# ...
# View Difference Details
res$Details$admiralonco
# # A difference object: admiralonco package
# - Comparing: v0.3.0/v1.2.0
# - Breaking Changes: TRUE
# - Added Functions:
# - bor_cr()
# - bor_ne()
# - bor_non_crpd()
# - bor_pd()
# - bor_pr()
# - bor_sd()
# - cb_y()
# - cbor_cr()
# - cbor_pr()
# - crsp_y_cr()
# - crsp_y_pr()
# - no_data_missing()
# - no_data_n()
# - rsp_y()
# - Removed Functions:
# - call_aval_fun()
# - derive_param_lasta()
```
What is convenient is that you can run
these functions before any new package versions are downloaded and installed.
They work on archive packages stored on CRAN, not on your local machine.
In this way, prior to any actual upgrade,
you can make a determination as to a) whether to proceed with
the upgrade or not, and b) how much effort it might take to fix any breakages.
## Assessing Entire Repository
In addition to anticipating breakages for a large number of packages,
**pkgdiff** also allows you to gather stability scores for a large number of
packages. Bulk stability scores are achieved using `repo_stability()`. Here is
how to do it:
```{r eval=FALSE, echo=TRUE}
# Create vector of packages
v1 <- c("curl", "dplyr", "dbplyr", "purrr")
# Assess stability
res <- repo_stability(v1)
# Getting stability score for package 'curl'...
# Getting stability score for package 'dplyr'...
# Getting stability score for package 'dbplyr'...
# Getting stability score for package 'purrr'...
# View results
res
# # A repo stability object
# - Run Datetime: 2025-03-01 17:46 UTC
# - Summary:
# Package FV LV FR LR TR BR Score Assessment
# 1 curl 0.2 6.2.1 2014-11-20 2025-02-19 51 1 98.0 Very Stable
# 2 dplyr 0.1 1.1.4 2014-01-16 2023-11-17 45 20 87.5 Somewhat Unstable
# 3 dbplyr 1.0.0 2.5.0 2017-06-09 2024-03-19 23 10 74.1 Unstable
# 4 purrr 0.1.0 1.0.4 2015-09-28 2025-02-05 18 6 92.1 Stable
```
The above result shows each package on the input vector, the first and last
versions, the first and last release dates, and the total number of releases.
It also shows the number of breaking releases, a stability score, and
a stablity assessment for each package. This information is very helpful
to get an overall sense of the stability of your repository, and where
breaking changes might occur when they do.
Like `repo_breakages()`, `repo_stability()` can be used to assess an entire
repository. Simply use `pkg_repo()` to get the packages in your current repo,
and pass the "Packages" column into `repo_stability()`. Remember to give
`repo_stability()` plenty of uninterrupted processing time if you are
assessing a large number of packages.
## Next Steps
For addition research on **pkgdiff**, you may wish to browse the following
articles:
* [Stability Score](pkgdiff-stability.html)
* [Package Cache](pkgdiff-cache.html)
* [Frequently Asked Questions](pkgdiff-faq.html)